6736 measured reflections

 $R_{\rm int} = 0.035$ 

2743 independent reflections 2435 reflections with  $I > 2\sigma(I)$ 

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 2-Chloro-1-(3-methyl-3-phenylcyclobutyl)ethanone

# Muharrem Dinçer,<sup>a</sup> Namık Özdemir,<sup>a</sup>\* İbrahim Yılmaz<sup>b</sup> and Orhan Büyükgüngör<sup>a</sup>

<sup>a</sup>Department of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, and <sup>b</sup>Department of Chemistry, Arts and Sciences Faculty, Firat University, 23119 Elazığ, Turkey Correspondence e-mail: namiko@omu.edu.tr

Received 5 June 2007; accepted 6 July 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.071; data-to-parameter ratio = 20.0.

The title compound, C<sub>13</sub>H<sub>15</sub>ClO, has a nonplanar conformation. The phenyl ring and chloroacetaldehyde group are in cis positions. Molecules are linked to one another by intermolecular C-H···O interactions, forming a C(4) chain running parallel to the [001] direction. The cyclobutane ring is puckered, with a dihedral angle of  $26.81 (13)^{\circ}$ .

## **Related literature**

For related literature, see: Akhmedov et al. (1991); Allen et al. (1987); Bernstein et al. (1995); Dehmlow & Schmidt (1990); Demir et al. (2006); Dincer et al. (2004); Gompper & Christmann (1959); Roger et al. (1977); Özdemir et al. (2004); Cukurovalı et al. (2002).



# **Experimental**

Crystal data C13H15ClO  $M_r = 222.70$ Orthorhombic, Pca21 a = 9.4980 (9) Åb = 15.6393 (11) Å c = 7.8578 (7) Å

 $V = 1167.21 (17) \text{ Å}^3$ Z = 4Mo Ka radiation  $\mu = 0.30 \text{ mm}^-$ T = 100 K $0.61 \times 0.40 \times 0.22~\mathrm{mm}$ 

#### Data collection

| Stoe IPDS II diffractometer          |
|--------------------------------------|
| Absorption correction: integration   |
| (X-RED32; Stoe & Cie, 2002)          |
| $T_{\min} = 0.885, T_{\max} = 0.944$ |

# Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.030$ | H-atom parameters constrained                              |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.071$               | $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$  |
| S = 1.05                        | $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$ |
| 2743 reflections                | Absolute structure: Flack (1983),                          |
| 137 parameters                  | 1251 Friedel pairs                                         |
| 1 restraint                     | Flack parameter: $-0.01(5)$                                |
|                                 |                                                            |

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$      | $D-{\rm H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------|-------------|-------------------------|--------------|---------------------------|
| $C1-H1A\cdots O1^{i}$ | 0.97        | 2.46                    | 3.244 (2)    | 137                       |
| Summature and as (i)  | 11          |                         |              |                           |

Symmetry code: (i)  $-x + \frac{1}{2}$ ,  $y, z + \frac{1}{2}$ .

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

This study was supported financially by the Research Center of Ondokuz Mayıs University (project No. F-366).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2017).

### References

- Akhmedov, M. A., Sardarov, I. K., Akhmedov, I. M., Kostikov, R. R., Kisin, A. V. & Babaev, N. M. (1991). Zh. Org. Khim. 27, 1434-1440.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573
- Çukurovalı, A., Yılmaz, İ., Özmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171-176.
- Dehmlow, E. V. & Schmidt, S. S. (1990). Liebigs Ann. Chem. pp. 411-414.
- Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, I. (2006). Acta Cryst. E62, 0298-0299
- Dinçer, M., Özdemir, N., Çukurovalı, A., Yılmaz, İ. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1523-o1524.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gompper, R. & Christmann, O. (1959). Chem. Ber. 92, 1994-1998.
- Özdemir, N., Dinçer, M., Yılmaz, İ. & Çukurovalı, A. (2004). Acta Cryst. E60, 0145-0147.
- Roger, E., Pierre, C. J., Pualette, V., Gerard, G., Chepat, J. P. & Robert, G. (1977). Eur. J. Med. Chem. Chem. Ther. 12, 501-509
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3489 [doi:10.1107/S160053680703317X]

# 2-Chloro-1-(3-methyl-3-phenylcyclobutyl)ethanone

# M. Dinçer, N. Özdemir, I. Yilmaz and O. Büyükgüngör

## Comment

It has been shown that 3-substituted cyclobutane carboxylic acid derivatives have antidepressant activities and liquid crystal properties (Roger *et al.*, 1977; Dehmlow & Schmidt, 1990;). Substituted  $\alpha$ -haloketones, like title compound, are used for different purposes, especially in the synthesis of heterocyclic compounds (Gompper & Christmann, 1959; Çukurovalı *et al.*, 2002). The extensive synthetic possibilies of this compound, due to the presence of active reaction sites, hold promise for the preparation of new heterocyclic chemicals. As a continuation of our investigations on the cyclobutane derivatives, a crystal structure determination of the title compound, (I), has been undertaken and the results are presented here.

In the crystal structure, the phenyl ring and chloroacetaldehyde group are in *cis* position with respect to the cyclobutane ring. Although close to being planar, the cyclobutane ring in (I) is more puckered than those in the literature [11.55 (3)°,Özdemir *et al.*, 2004; 19.8 (3)°, Dinçer *et al.*, 2004]. The C4/C3/C6 plane forms a dihedral angle of 26.81 (13)° with the C4/C5/C6 plane. However, the bond lengths and angles in the four-membered ring are normal (Allen *et al.*, 1987). The C—Cl and C=O bond distances are 1.7692 (17) and 1.211 (2) Å, repectively, and these values are significantly shorter than those in the literature [1.807 (12) and 1.187 (16) Å, respectively; Demir *et al.*, 2006].

In the crystal structure of (I), atom C1 in the molecule at (x, y, z) acts as hydrogen-bond donor to the O atom in the molecule at (-x + 1/2, y, z + 1/2), forming a C(4) (Bernstein *et al.*, 1995) chain running parallel to the [001] direction and generated by the c-glide plane at x = 1/4 (Fig. 2). There are no other significant interactions in the crystal structure of (I).

# **Experimental**

The synthesis of the title compound was realised according to the literature method (Akhmedov *et al.*, 1991) with some modifications as given in the reaction sequence. The crystals which is suitable for X-ray analysis was obtained by the crystallization from n-hexane (yield 72%; m.p. 326 K). IR (v, cm<sup>-1</sup>): 1724 (C=O), 732 (-CH<sub>2</sub>--Cl), 3049–3024 (Aromatics), 2980–2864 (Aliphatics); <sup>1</sup>H NMR (CDCl<sub>3</sub>, p.p.m.):  $\delta$  1.54 (s, 3H, CH<sub>3</sub> on cyclobutane), 2.37 (m, 2H, -CH<sub>2</sub>- in cyclobutane), 2.62 (m, 2H, -CH<sub>2</sub>- in cyclobutane), 3.67 (q, j = 9.1 Hz, 1H, >CH-), 4.09 (s, 2H, -CH<sub>2</sub>-), 7.13–7.34 (m, 5H, aromatics); <sup>13</sup>C NMR (CDCl<sub>6</sub>, p.p.m.):  $\delta$  47.02, 203.66, 37.51, 37.05, 38.83, 30.56, 151.03, 124.78, 128.58, 125.94.

## Refinement

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.93, 0.96, 0.97 and 0.98 Å for aromatic, methyl, methylene and methine H atoms, respectively. The displacement parameters of the H atoms were constrained to be  $U_{iso}(H)=1.2U_{eq}(1.5U_{eq}$  for methyl) of the carrier atom. Refinement of the absolute structure parameter (Flack, 1983) yielded a value of -0.01 (5).

**Figures** 



Fig. 1. An *ORTEP-3* (Farrugia, 1997) drawing of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2. Part of the crystal structure of (I), showing a C(4) chain along [001]. For the sake of clarity, H atoms bonded to C atoms not involved in the motif shown have been omitted.

Fig. 3. Reaction scheme for the preparation of (I).

# 2-Chloro-1-(3-methyl-3-phenylcyclobutyl)ethanone

Crystal data

| C <sub>13</sub> H <sub>15</sub> ClO     | $F_{000} = 472$                                 |
|-----------------------------------------|-------------------------------------------------|
| $M_r = 222.70$                          | $D_{\rm x} = 1.267 {\rm ~Mg~m}^{-3}$            |
| Orthorhombic, <i>Pca</i> 2 <sub>1</sub> | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| Hall symbol: P 2c -2ac                  | Cell parameters from 6312 reflections           |
| a = 9.4980 (9)  Å                       | $\theta = 2.5 - 28.0^{\circ}$                   |
| <i>b</i> = 15.6393 (11) Å               | $\mu = 0.30 \text{ mm}^{-1}$                    |
| c = 7.8578 (7) Å                        | T = 100  K                                      |
| $V = 1167.21 (17) \text{ Å}^3$          | Prism, colorless                                |
| Z = 4                                   | $0.61 \times 0.40 \times 0.22 \text{ mm}$       |

# Data collection

| Stoe IPDS II<br>diffractometer                                    | 2743 independent reflections           |
|-------------------------------------------------------------------|----------------------------------------|
| Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus  | 2435 reflections with $I > 2\sigma(I)$ |
| Monochromator: plane graphite                                     | $R_{\rm int} = 0.035$                  |
| Detector resolution: 6.67 pixels mm <sup>-1</sup>                 | $\theta_{\text{max}} = 27.9^{\circ}$   |
| T = 100  K                                                        | $\theta_{\min} = 2.5^{\circ}$          |
| ω scans                                                           | $h = -12 \rightarrow 10$               |
| Absorption correction: integration<br>(X-RED32; Stoe & Cie, 2002) | $k = -20 \rightarrow 20$               |
| $T_{\min} = 0.885, T_{\max} = 0.944$                              | $l = -10 \rightarrow 10$               |
| 6736 measured reflections                                         |                                        |

# Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from neighbouring sites                                  |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | H-atom parameters constrained                                                             |
| $R[F^2 > 2\sigma(F^2)] = 0.030$                                | $w = 1/[\sigma^2(F_o^2) + (0.038P)^2 + 0.0689P]$<br>where $P = (F_o^2 + 2F_c^2)/3$        |
| $wR(F^2) = 0.071$                                              | $(\Delta/\sigma)_{\rm max} = 0.001$                                                       |
| <i>S</i> = 1.05                                                | $\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$                                     |
| 2743 reflections                                               | $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$                                |
| 137 parameters                                                 | Extinction correction: SHELXL97,<br>$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| 1 restraint                                                    | Extinction coefficient: 0.0052 (14)                                                       |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1251 Friedel pairs                                      |
|                                                                |                                                                                           |

Secondary atom site location: difference Fourier map Flack parameter: -0.01 (5)

# Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|--------------|--------------|--------------|-------------------------------|
| Cl1 | 0.41536 (4)  | 0.37951 (2)  | 0.10882 (5)  | 0.03443 (11)                  |
| 01  | 0.27620 (14) | 0.54032 (7)  | 0.00821 (18) | 0.0385 (3)                    |
| C1  | 0.43719 (18) | 0.47994 (10) | 0.2090 (2)   | 0.0304 (3)                    |
| H1A | 0.4059       | 0.4754       | 0.3262       | 0.036*                        |
| H1B | 0.5366       | 0.4940       | 0.2106       | 0.036*                        |
| C2  | 0.35801 (15) | 0.55188 (9)  | 0.1242 (2)   | 0.0243 (3)                    |
| C3  | 0.39456 (16) | 0.63806 (9)  | 0.19372 (19) | 0.0234 (3)                    |
| Н3  | 0.4005       | 0.6363       | 0.3182       | 0.028*                        |
| C4  | 0.52987 (14) | 0.67903 (9)  | 0.1165 (2)   | 0.0253 (3)                    |
| H4A | 0.6116       | 0.6759       | 0.1903       | 0.030*                        |
| H4B | 0.5521       | 0.6591       | 0.0027       | 0.030*                        |
| C5  | 0.45381 (14) | 0.76651 (9)  | 0.1207 (2)   | 0.0228 (3)                    |
| C6  | 0.31190 (15) | 0.71696 (9)  | 0.13509 (19) | 0.0227 (3)                    |
| H6A | 0.2485       | 0.7397       | 0.2207       | 0.027*                        |
| H6B | 0.2639       | 0.7093       | 0.0272       | 0.027*                        |
|     |              |              |              |                               |

# supplementary materials

| C7  | 0.48815 (19) | 0.81500 (11) | 0.2856 (2)    | 0.0278 (4) |
|-----|--------------|--------------|---------------|------------|
| H7A | 0.4785       | 0.7771       | 0.3810        | 0.042*     |
| H7B | 0.4244       | 0.8622       | 0.2984        | 0.042*     |
| H7C | 0.5830       | 0.8360       | 0.2806        | 0.042*     |
| C8  | 0.46899 (18) | 0.82486 (10) | -0.03045 (19) | 0.0231 (3) |
| C9  | 0.58479 (18) | 0.82191 (11) | -0.1395 (2)   | 0.0285 (3) |
| Н9  | 0.6562       | 0.7825       | -0.1200       | 0.034*     |
| C10 | 0.5941 (2)   | 0.87746 (12) | -0.2769 (2)   | 0.0346 (4) |
| H10 | 0.6713       | 0.8743       | -0.3494       | 0.041*     |
| C11 | 0.4903 (2)   | 0.93721 (11) | -0.3071 (2)   | 0.0356 (4) |
| H11 | 0.4973       | 0.9743       | -0.3992       | 0.043*     |
| C12 | 0.3753 (2)   | 0.94139 (11) | -0.1987 (2)   | 0.0330 (4) |
| H12 | 0.3051       | 0.9818       | -0.2175       | 0.040*     |
| C13 | 0.36494 (19) | 0.88556 (10) | -0.06253 (19) | 0.0263 (3) |
| H13 | 0.2870       | 0.8886       | 0.0089        | 0.032*     |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$     | $U^{33}$   | $U^{12}$     | $U^{13}$    | $U^{23}$    |
|-----|-------------|--------------|------------|--------------|-------------|-------------|
| Cl1 | 0.0380 (2)  | 0.02533 (17) | 0.0400 (2) | 0.00003 (15) | 0.0113 (2)  | -0.0010 (2) |
| 01  | 0.0412 (7)  | 0.0304 (6)   | 0.0439 (7) | -0.0022 (5)  | -0.0176 (6) | -0.0011 (5) |
| C1  | 0.0332 (8)  | 0.0289 (8)   | 0.0290 (7) | 0.0035 (7)   | 0.0012 (7)  | -0.0001 (7) |
| C2  | 0.0226 (6)  | 0.0268 (7)   | 0.0234 (6) | -0.0009 (5)  | 0.0016 (6)  | 0.0011 (7)  |
| C3  | 0.0235 (7)  | 0.0248 (8)   | 0.0219 (7) | -0.0003 (6)  | -0.0007 (6) | 0.0025 (6)  |
| C4  | 0.0211 (6)  | 0.0280 (7)   | 0.0269 (6) | 0.0002 (5)   | 0.0015 (8)  | 0.0038 (8)  |
| C5  | 0.0214 (6)  | 0.0259 (7)   | 0.0210 (6) | -0.0012 (5)  | 0.0005 (7)  | 0.0010 (7)  |
| C6  | 0.0215 (6)  | 0.0258 (7)   | 0.0208 (7) | 0.0004 (5)   | -0.0001 (6) | 0.0006 (6)  |
| C7  | 0.0314 (9)  | 0.0302 (9)   | 0.0218 (7) | -0.0007 (7)  | -0.0012 (7) | -0.0009 (6) |
| C8  | 0.0240 (8)  | 0.0239 (7)   | 0.0213 (7) | -0.0054 (6)  | -0.0012 (6) | -0.0032 (6) |
| C9  | 0.0270 (8)  | 0.0316 (8)   | 0.0269 (7) | -0.0060 (7)  | 0.0016 (6)  | -0.0037 (7) |
| C10 | 0.0377 (10) | 0.0407 (9)   | 0.0253 (7) | -0.0155 (8)  | 0.0036 (7)  | -0.0003 (7) |
| C11 | 0.0491 (11) | 0.0310 (9)   | 0.0268 (8) | -0.0157 (8)  | -0.0050 (8) | 0.0043 (7)  |
| C12 | 0.0428 (10) | 0.0271 (8)   | 0.0290 (8) | -0.0048 (7)  | -0.0109 (7) | 0.0009 (7)  |
| C13 | 0.0298 (8)  | 0.0245 (8)   | 0.0246 (7) | -0.0029 (6)  | -0.0014 (6) | -0.0003 (6) |

Geometric parameters (Å, °)

| 1.7692 (17) | С6—Н6В                                                                                                                                          | 0.9700                                                                                                                                                                        |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.211 (2)   | С7—Н7А                                                                                                                                          | 0.9600                                                                                                                                                                        |
| 1.509 (2)   | С7—Н7В                                                                                                                                          | 0.9600                                                                                                                                                                        |
| 0.9700      | С7—Н7С                                                                                                                                          | 0.9600                                                                                                                                                                        |
| 0.9700      | C8—C13                                                                                                                                          | 1.393 (2)                                                                                                                                                                     |
| 1.495 (2)   | C8—C9                                                                                                                                           | 1.395 (2)                                                                                                                                                                     |
| 1.5334 (19) | C9—C10                                                                                                                                          | 1.388 (2)                                                                                                                                                                     |
| 1.559 (2)   | С9—Н9                                                                                                                                           | 0.9300                                                                                                                                                                        |
| 0.9800      | C10-C11                                                                                                                                         | 1.379 (3)                                                                                                                                                                     |
| 1.5475 (19) | C10—H10                                                                                                                                         | 0.9300                                                                                                                                                                        |
| 0.9700      | C11—C12                                                                                                                                         | 1.386 (3)                                                                                                                                                                     |
| 0.9700      | C11—H11                                                                                                                                         | 0.9300                                                                                                                                                                        |
|             | 1.7692 (17)<br>1.211 (2)<br>1.509 (2)<br>0.9700<br>0.9700<br>1.495 (2)<br>1.5334 (19)<br>1.559 (2)<br>0.9800<br>1.5475 (19)<br>0.9700<br>0.9700 | 1.7692 (17)C6—H6B1.211 (2)C7—H7A1.509 (2)C7—H7B0.9700C7—H7C0.9700C8—C131.495 (2)C8—C91.5334 (19)C9—C101.559 (2)C9—H90.9800C10—C111.5475 (19)C10—H100.9700C11—C120.9700C11—H11 |

| С5—С8                                           | 1.505 (2)       | C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.385 (2)        |
|-------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| С5—С7                                           | 1.536 (2)       | C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9300           |
| C5—C6                                           | 1.5589 (19)     | C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9300           |
| С6—Н6А                                          | 0.9700          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| C2C1Cl1                                         | 114.01 (12)     | С5—С6—Н6А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113.8            |
| C2—C1—H1A                                       | 108.7           | С3—С6—Н6В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113.8            |
| Cl1—C1—H1A                                      | 108.7           | С5—С6—Н6В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113.8            |
| C2—C1—H1B                                       | 108.7           | H6A—C6—H6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111.1            |
| Cl1—C1—H1B                                      | 108.7           | С5—С7—Н7А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5            |
| H1A—C1—H1B                                      | 107.6           | С5—С7—Н7В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5            |
| O1—C2—C3                                        | 123.96 (13)     | H7A—C7—H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5            |
| O1—C2—C1                                        | 122.75 (14)     | С5—С7—Н7С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5            |
| C3—C2—C1                                        | 113.26 (14)     | H7A—C7—H7C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5            |
| C2—C3—C6                                        | 119.78 (13)     | H7B—C7—H7C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5            |
| C2—C3—C4                                        | 114.81 (13)     | C13—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118.07 (15)      |
| C6—C3—C4                                        | 88.53 (11)      | C13—C8—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.21 (14)      |
| С2—С3—Н3                                        | 110.6           | C9—C8—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.71 (15)      |
| С6—С3—Н3                                        | 110.6           | C10—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.48 (17)      |
| С4—С3—Н3                                        | 110.6           | С10—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.8            |
| C5-C4-C3                                        | 88 29 (10)      | С8—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.8            |
| C5-C4-H4A                                       | 113.9           | C11—C10—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120 80 (17)      |
| C3—C4—H4A                                       | 113.9           | C11—C10—H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.6            |
| C5—C4—H4B                                       | 113.9           | C9—C10—H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.6            |
| C3—C4—H4B                                       | 113.9           | C10-C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119 31 (16)      |
| H4A—C4—H4B                                      | 111.1           | C10—C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.3            |
| C8-C5-C7                                        | 110.25 (11)     | C12—C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.3            |
| C8 - C5 - C4                                    | 118.32 (15)     | $C_{13}$ $-C_{12}$ $-C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.08 (18)      |
| C7—C5—C4                                        | 110.82(14)      | C13 - C12 - H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.00           |
| C8-C5-C6                                        | 116.20 (13)     | C11 - C12 - H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.0            |
| C7C5C6                                          | 111.58 (13)     | C12 - C13 - C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.26 (16)      |
| C4-C5-C6                                        | 88.04 (10)      | C12 - C13 - H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119.4            |
| $C_{3}$ $-C_{6}$ $-C_{5}$                       | 88 80 (10)      | C8-C13-H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.4            |
| C3—C6—H6A                                       | 113.8           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 117.1            |
| $C_{11} - C_{1} - C_{2} - O_{1}$                | 68(2)           | C4-C5-C6-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.01 (13)       |
| $C_{11} - C_{1} - C_{2} - C_{3}$                | -171.24(11)     | C7 - C5 - C8 - C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -7572(17)        |
| 01-02-03-06                                     | 86(2)           | C4-C5-C8-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 155 30 (13)      |
| $C_1 = C_2 = C_3 = C_6$                         | -173 33 (13)    | C6-C5-C8-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52 5 (2)         |
| 01 - 02 - 03 - 04                               | $-94\ 80\ (19)$ | C7 - C5 - C8 - C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103.18(17)       |
| C1 - C2 - C3 - C4                               | 83 25 (17)      | $C_{4} - C_{5} - C_{8} - C_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -25.8(2)         |
| $C_{2}^{2} = C_{3}^{2} = C_{4}^{2} = C_{5}^{2}$ | 141.38(13)      | $C_{1} = C_{2} = C_{3} = C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -128.62(16)      |
| $C_{2} = C_{3} = C_{4} = C_{5}$                 | 19.00(12)       | C13 - C8 - C9 - C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.8(2)          |
| $C_{3}$ $C_{4}$ $C_{5}$ $C_{8}$                 | -137 59 (13)    | $C_{5}$ $C_{8}$ $C_{9}$ $C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -179.69(15)      |
| $C_{3}$ $C_{4}$ $C_{5}$ $C_{7}$                 | 93 69 (14)      | $C_{8} = C_{9} = C_{10} = C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8 (3)          |
| $C_{3}$ $C_{4}$ $C_{5}$ $C_{6}$                 | -18 69 (17)     | C9-C10-C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.1(3)          |
| $C_2 - C_3 - C_6 - C_5$                         | -136.82(14)     | C10-C11-C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.5(3)          |
| $C_{4}$ $C_{3}$ $C_{6}$ $C_{5}$                 | -18 86 (12)     | $C_{11}$ $C_{12}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C_{13}$ $C$ | 0.5(3)           |
| $C_{8} = C_{5} = C_{6} = C_{3}$                 | 139.81 (13)     | $C_{11} = C_{12} = C_{13} = C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3(2)<br>0.2(2) |
| $C_{7}$ $C_{5}$ $C_{6}$ $C_{3}$                 | -92 64 (13)     | $C_{5} = C_{8} = C_{13} = C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 179 10 (14)      |
| -, -, -, -, -, -, -, -, -, -, -, -, -, -        | 22.0T (13)      | 05 05 015 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2.10(17)       |

Hydrogen-bond geometry (Å, °)

| D—H···A                                             | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot\!\!\cdot\!A$ |
|-----------------------------------------------------|-------------|--------------|--------------|---------------------------------------------------------------|
| C1—H1A···O1 <sup>i</sup>                            | 0.97        | 2.46         | 3.244 (2)    | 137                                                           |
| Symmetry codes: (i) $-x+1/2$ , <i>y</i> , $z+1/2$ . |             |              |              |                                                               |



Fig. 1



Fig. 3

